매스웍스(https://kr.mathworks.com/)는 매트랩(MATLAB) 및 시뮬링크(Simulink)에 다양한 새로운 기능이 추가된 ‘2018b’를 발표했다.


‘R2018b’는 영상 처리, 컴퓨터 비전, 신호 처리 및 시스템 관련 엔지니어는 매트랩을 사용하여 복잡한 네트워크 아키텍처를 보다 쉽게 설계하고 딥러닝 모델의 성능을 향상시킬 수 있으며, 딥뉴럴 네트워크를 설계하고 구현하기 위한 프레임워크를 제공하는 ‘딥러닝 툴박스(Deep Learning Toolbox)’가 뉴럴 네트워크 툴박스를 대체 제공한다는 것이 회사 측의 설명이다.


매스웍스는 최근 ONNX 커뮤니티와 함께 상호 운용성에 대한 의지를 보여줌으로써 매트랩 사용자와 다른 딥러닝 프레임워크 간의 협업을 가능하도록 지원하고 있다. 엔지니어는 R2018b의 신규 ONNX 변환기를 사용하여 파이토치(PyTorch), MxNet 및 텐서플로(TensorFlow)와 같은 지원 프레임워크에서 모델을 가져오고 내보낼 수 있다.


이러한 상호 운용성을 통해 매트랩에서 학습한 모델을 다른 프레임워크에서 사용할 수 있으며, 마찬가지로 다른 프레임워크에서 학습한 모델을 매트랩으로 가져와 디버깅, 유효성 검사 및 임베디드 배포와 같은 작업을 수행할 수 있다. 또한, R2018b는 단 한 줄의 코드로 액세스할 수 있는 선별된 참조 모델 세트를 제공하며, 추가 모델 임포터는 카페(Caffe)와 케라스-텐서플로(Keras-Tensorflow)의 모델을 사용할 수 있다. 


나아가 인텔 MKL-DNN 및 ARM 컴퓨트 라이브러리(Compute Library)를 사용하여 인텔과 ARM 플랫폼에 대한 배포 지원을 추가했으며, 엔비디아 GPU 클라우드의 매트랩 딥 러닝 컨테이너(Deep Learning Container) 및 아마존웹서비스와 마이크로소프트 애저(Microsoft Azure)용 매트랩 참조 아키텍처를 사용하여 클라우드 공급업체를 지원한다.


매스웍스의 매트랩 마케팅 디렉터인 데이비드 리치는 “여러 산업 분야에 딥러닝이 널리 보급됨에 따라 다양한 전문 분야의 엔지니어와 과학자는 이를 폭넓게 사용, 액세스 및 적용할 수 있어야 한다”며 “이제는 딥러닝 초보자와 전문가가 연구에서 프로토타입과 제작에 이르기까지 통합된 딥러닝 워크플로를 사용하여 매트랩으로 고급 연구를 학습, 적용 및 수행할 수 있다”고 설명했다.


피엔에프뉴스 pnfnews@pnfnews.com

Share